SOLUTIONS TO PROBABILITY QUESTION FROM LAST TIME

If you find any errors in this document, please alert me.

Exercise 1. The letters of the alphabet are written on 26 cards. Two cards are chosen at random. What is the probability that at least one of them is a consonant?

There are different ways one can solve this; I'll write 3 possible solutions. Compare with what you've done. On an exam, you'd have to write only one correct solution, of course.

Solution 1.

Let

E = event that at least one is a consonant.

Let's compute

 E^c = event that neither is a consonant

instead and then use

$$P(E) = 1 - P(E^c).$$

Let A be event that the first card is a consonant and B be event that the second card is a consonant. The event E^c is the event that the first card is not a consonant and the second card is not a consonant, so

$$E^c = A^c \cap B^c$$

Note that A^c and B^c are dependent, and $P(A^c) = \frac{5}{26}$ and $P(B^c \mid A^c) = \frac{4}{25}$. Thus

$$P(A^c \cap B^c) = \frac{5}{26} \times \frac{4}{25} = \frac{2}{65}.$$
$$P(E) = 1 - \frac{2}{65} = \frac{63}{65}.$$

Thus

Note 1. We were after the probability of
$$E = A \cup B$$
. Instead, we computed the probability of $E^c = (A \cup B)^c$ and what we really did is use DeMorgan's law to write $(A \cup B)^c = A^c \cap B^c$.

Solution 2.

Let

E = event that at least one is a consonant.

Let A be event that the first card is a consonant and B be event that the second card is a consonant. , so

$$E = A \cup B.$$

Now A and B are not independent, so recall that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Now the unconditional probability of A or B is $P(A) = P(B) = \frac{21}{26}$. Also, we can compute

$$P(A \cap B) = P(A)P(A \mid B) = \frac{21}{26} \times \frac{20}{25}$$

Therefore,

$$P(E) = \frac{21}{26} + \frac{21}{26} - \frac{21}{26} \times \frac{20}{25} = \frac{42 \cdot 25 - 21 \cdot 20}{26 \cdot 25} = \frac{63}{65}$$

(This was not hard at all to simplify)

Solution 3.

Let

E = event that at least one is a consonant.

Let's compute

 E^c = event that neither is a consonant

instead and then use

$$P(E) = 1 - P(E^c).$$

Now let's compute $P(E^c)$ in a different way. E^c is the event that neither card is a consonant, or equivalently, that both cards are vowels. There are $\binom{26}{2}$ ways to choose 2 cards out of 26, and there are $\binom{5}{2}$ ways to choose 2 vowels out of 5. Therefore,

$$P(E^c) = \frac{\binom{5}{2}}{\binom{26}{2}} = \frac{\frac{5!}{2! \ 3!}}{\frac{26!}{2! \ 24!}} = \frac{5! \ 2! \ 24!}{2! \ 3! \ 26!} = \frac{2}{65}$$

(This was not hard at all to simplify)

Therefore,

$$P(E) = 1 - \frac{2}{65} = \frac{63}{65}.$$